La scodella di Galileo


Pagina tratta da:


Galileo Galilei
DISCORSI E DIMOSTRAZIONI MATEMATICHE
INTORNO A DUE NUOVE SCIENZE

ATTENENTI ALLA MECANICA & I MOVIMENTI LOCALI

GIORNATA PRIMA
Interlocutori:
Salviati, Sagredo e Simplicio



Salv. Così si faccia, poiché tale è il vostro gusto: e cominciando dal primo, che fu come si possa mai capire che un sol punto sia eguale ad una linea, vedendo di non ci poter far altro per ora, procurerò di quietare o almeno temperare una improbabilità con un'altra simile o maggiore, come talvolta una maraviglia si attutisce con un miracolo. E questo sarà col mostrarvi, due superficie eguali, ed insieme due corpi pur eguali e sopra le medesime dette superficie, come basi loro, collocati, andarsi continuamente ed egualmente, e queste e quelli, nel medesimo tempo diminuendo, restando sempre tra di loro eguali i loro residui, e finalmente andare, sì le superficie come i solidi, a terminare le lor perpetue egualità precedenti, l'uno de i solidi con l'una delle superficie in una lunghissima linea, e l'altro solido con l'altra superficie in un sol punto, cioè, questi in un sol punto, e quelli in infiniti.

Sagr. Ammirabil proposta veramente mi par cotesta; però sentiamone l'esplicazione e la dimostrazione.

Salv. È necessario farne la figura, perché la prova è pura geometrica.




Per tanto intendasi il mezzo cerchio AFB, il cui centro C, ed intorno ad esso il parallellogrammo rettangolo ADEB, e dal centro a i punti Dsiano tirate le rette linee CDCE; figurandoci poi il semidiametro CF, perpendicolare a una delle due ABDE, immobile, intendiamo intorno a quello girarsi tutta questa figura: è manifesto che dal rettangolo ADEB verrà descritto un cilindro, dal semicircolo AFB una mezza sfera, e dal triangolo CDE un cono. Inteso questo, voglio che ci immaginiamo esser levato via l'emisferio, lasciando però il cono e quello che rimarrà del cilindro, il quale, dalla figura che riterrà simile a una scodella, chiameremo pure scodella: della quale e del cono prima dimostreremo che sono eguali; e poi, un piano tirato parallelo al cerchio che è base della scodella, il cui diametro è la linea DE e centro F, dimostreremo, tal piano, che passasse, v. g., per la linea GN, segando la scodella ne i punti GI,ON, ed il cono ne' punti HL, tagliare la parte del cono CHL eguale sempre alla parte della scodella, il cui profilo ci rappresentano i triangoli GAIBON; e di più si proverà, la base ancora del medesimo cono, cioè il cerchio il cui diametro HL, esser eguale a quella circolar superficie che è base della parte della scodella, che è come se dicessimo un nastro di larghezza quanta è la linea GI (notate intanto che cosa sono le definizioni de i matematici, che sono una imposizion di nomi, o vogliam dire abbreviazioni di parlare, ordinate ed introdotte per levar lo stento tedioso che voi ed io sentiamo di presente per non aver convenuto insieme di chiamar, v. g., questa superficie, nastro circolare, e quel solido acutissimo della scodella rasoio rotondo): or comunque vi piaccia chiamargli, bastivi intendere che il piano prodotto per qualsivoglia distanza, pur che sia parallelo alla base, cioè al cerchio il cui diametro DE, taglia sempre i due solidi, cioè la parte del cono CHL e la superior parte della scodella, eguali tra di loro, e parimente le due superficie basi di tali solidi, cioè il detto nastro e 'l cerchio HL, pur tra loro eguali. Del che ne segue la maraviglia accennata: cioè, che se intenderemo il segante piano successivamente inalzato verso la linea AB, sempre le parti de i solidi tagliate sono eguali, come anco le superficie, che son basi loro, pur sempre sono eguali; e finalmente, alzando e alzando tanto li due solidi (sempre eguali) quanto le lor basi (superficie pur sempre eguali), vanno a terminare l'una coppia di loro in una circonferenza di un cerchio, e l'altra in un sol punto, ché tali sono l'orlo supremo della scodella e la cuspide del cono. Or mentre che nella diminuzione de i due solidi si va, sino all'ultimo, mantenendo sempre tra essi la egualità, ben par conveniente il dire che gli altissimi ed ultimi termini di tali menomamenti restino tra di loro eguali, e non l'uno infinitamente maggior dell'altro: par dunque che la circonferenza di un cerchio immenso possa chiamarsi eguale a un sol punto. E questo che accade ne i solidi, accade parimente nelle superficie, basi loro, che esse ancora, conservando nella comune diminuzione sempre la egualità, vanno in fine ad incontrare, nel momento della loro ultima diminuzione, quella per suo termine la circonferenza di un cerchio, e questa un sol punto; li quali perché non si devon chiamare eguali, se sono le ultime reliquie e vestigie lasciate da grandezze eguali? E notate appresso, che quando ben fussero tali vasi capaci de gl'immensi emisferii celesti, tanto gli orli loro supremi e le punte de i contenuti coni, servando sempre tra loro l'egualità, andrebbero a terminare, quelli in circonferenze eguali a quelle de i cerchi massimi de gli orbi celesti, e questi in semplici punti. Onde, conforme a quello che tali specolazioni ne persuadono, anco tutte le circonferenze de' cerchi quanto si voglia diseguali, posson chiamarsi tra loro eguali, e ciascheduna eguale a un punto solo.

Sagr. La specolazione mi par tanto gentile e peregrina, che io, quando ben potessi, non me gli vorrei opporre, ché mi parrebbe un mezzo sacrilegio lacerar sì bella struttura, calpestandola con qualche pedantesco affronto: però per intera sodisfazione recateci pur la prova, che dite geometrica, del mantenersi sempre l'egualità tra quei solidi e quelle basi loro, che penso che non possa esser se non molto arguta, essendo così sottile la filosofica meditazione che da tal conclusione depende.


Salv. La dimostrazione è anco breve e facile. Ripigliamo la segnata figura, nella quale, per esser l'angolo IPC retto, il quadrato del semidiametro IC è eguale alli due quadrati de i lati IPPC: ma il semidiametro IC è eguale alla AC, e questa alla GP, e la CP è eguale alla PH; adunque il quadrato della linea GP è eguale alli due quadrati delle IPPH e 'l quadruplo e i quadrupli, cioè il quadrato del diametro GN è eguale alli due quadrati IOHL: e perché i cerchi son tra loro come i quadrati de' lor diametri, il cerchio il cui diametro GN sarà eguale alli due cerchi i cui diametri IOHL, e tolto via il comune cerchio il cui diametro IO, il residuo del cerchio GN sarà eguale al cerchio il cui diametro è HL. E questo è quanto alla prima parte: quanto poi all'altra parte, lasceremo per ora la dimostrazione, sì perché, volendola noi vedere, la troveremo nella duodecima proposizione del libro secondo De centro gravitatis solidorum posta dal Sig. Luca Valerio, nuovo Archimede dell'età nostra, il quale per un altro suo proposito se ne servì, sì perché nel caso nostro basta l'aver veduto come le superficie già dichiarate siano sempre eguali, e che, diminuendosi sempre egualmente, vadano a terminare l'una in un sol punto e l'altra nella circonferenza d'un cerchio, maggiore anco di qualsivoglia grandissimo, perché in questa consequenza sola versa la nostra maraviglia.

______________________________________________

http://bibdig.museogalileo.it/Teca/Viewer?an=000000300951




Commenti